NASA/GSFC Contract NASW-99032
Photochemical Phenomenology Model for the New Millenium
Annual Report, 20 August 2000

Dr. James Bishop and J. Scott Evans

ABSTRACT

This project, entitled “Photochemical Phenomenology Model for the New Millennium” (NASW-
99032), tackles the problem of conversion of validated a priori physics-based modeling
capabilities (“legacy” computer codes) to application-oriented software for use in science and
science-support activities. The modeling capabilities of specific interest are those relevant to the
analysis and interpretation of planetary atmosphere observations, with particular focus on the
atmospheric remote sensing data to be acquired by the Composite Infrared Spectrometer (CIRS)
instrument on the CASSINI spacecraft during its Jupiter flyby and its orbital tour of the Saturnian
system. Initial implementations of the software package under development, named the
Photochemical Phenomenology Modeling Tool (PPMT), are aimed at construction and evaluation
of photochemical transport models that execute rapidly for use in mission planning and data
analysis activities. Overall, the project has followed the development outline given in the original
proposal, and the Year 1 design and architecture goals have been met. Specific accomplishments
and the difficulties encountered are summarized below, Most of the effort has gone into complete
definition of the PPMT interfaces within the context of today’s IT arena: adoption and adherence
to the CORBA Component Model (CCM) has yielded a solid architecture basis, and CORBA-
related issues (services, specification options, deployment plans, efc) have been largely resolved.
Implementation goals have been redirected somewhat so as to be more relevant to the upcoming
CASSINI flyby of Jupiter, with the focus now being more on data analysis and remote sensing
retrieval applications than on multidimensional transport modeling capabilities.

1. YEAR 1 ACCOMPLISHMENTS
From the original proposal:

“Current [photochemical transport] models are procedural driven codes that are awkward to
adapt to new photochemical schemes and, in the case of the more comprehensive codes, are
too bulky in execution to permit rapid turn-around in data-model comparisons and analysis.
We expect that the main utility to NASA programs of the [Photochemical Phenomenology
Modeling Tool (PPMT)] will be in the creation of photochemistry models that execute
rapidly for use in mission planning and data analysis activities. In particular, it will be used
in place of GRIFFIN to generate photochemical models of the Saturn stratosphere and the
atmosphere of Titan for CASSINI/CIRS planning and testing simulations and in eventual data
analysis...”

1.1 Photochemistry Phenomenology Algorithms

A detailed functional breakdown of algorithms for modeling the phenomena of direct interest in
the initial implementations has been carried out using three independent “legacy” source codes:
the GRIFFIN model of P.N. Romani (e.g., Romani et al. [1993]), the F1D model of J. Bishop and
J. Roberts [Bishop et al., 1994], and the CHEM1D model of M.E. Summers (e.g., Summers and
Strobel [1996]). (We are especially grateful to Dr. Mike Summers for providing us with his
source codes without hesitation.) All are in FORTRAN, and the core photochemical transport
solution algorithm in each is based on an extended version of the classical Newton-Raphson
technique (indeed, the similarity between the Romani and Summers solution schemes is
somewhat surprising). As described in the original proposal, the Bishop/Roberts F1D approach
provides the flexibility needed in the PPMT and the sets of algorithms within F1D are good
analogues for many of the needed PPMT methods; breakdown of the Summers’ CHEM1D code
has been valuable, however, owing to its procedures for handling a wider variety of boundary
conditions and its inclusion of algorithms for physical processes (e.g., photodissociation by MUV
diffuse radiation fields) not found in the current GRIFFIN or F1D codes. A full description of the
Newton-Raphson algorithms as implemented in PPMT will be provided in the documentation
accompanying the first “official” version to be delivered to GSFC/Code 693 at the end of the 2
quarter of Year 2.

1.1.1 Language Considerations

Although the performance of C++ executable code is generally believed to be superior to that of
interpreted code such as Java, it is also accepted that the time-to-market is shorter with Java
development than with C++ development. Therefore it has been important for us to weigh the
advantages and disadvantages of choosing one language over another for our application(s). In
the 1% quarter report (Year 1) we stated that the core architecture and most if not all of the
photochemistry algorithms would be implemented in C++ and that this decision was based
primarily on performance considerations. Given that we have since elected to utilize the CCM as
the core architecture for the PPMT, we have been forced to reevaluate this decision. CCM is still
undergoing final revision within the standardization process at the Object Management Group
(OMG) and third-party implementations of the CCM are not yet available (Java implementations
named ZEN and OpenORB will be released to the public sometime in the next few months). In
view of the consequential time and resource limitations, we decided that it would be prudent to
sacrifice some performance in favor of an accelerated development. Therefore, we have chosen
to implement most if not all of the PPMT architecture using the Java language (although using
CORBA we can certainly implement specific components of the system in C++ if performance
becomes severely reduced). We have conducted informal performance comparisons of several
numerically intensive applications written in both C++ and Java. The performance tests showed
that Java and C++ perform equally well on a Windows/Intel platform when performing matrix
inversions and Singular Value Decomposition using matrices ranging from 3 x 3 to 1000 x 1000
floating point values. We will continue to gauge the performance of the PPMT as
implementation proceeds.

1.2 Model

In order to develop a Domain Model for the PPMT we first constructed a Use Case Model and
corresponding Use Case Specifications (i.e., template documents describing a basic flow of
events needed to satisfy a Use Case). The Use Case Model was developed using Rational Rose
and incorporates both user interface and photochemical phenomenology requirements. Top-level
use case diagrams from the Rational Rose Use Case Model are shown in Figures 1-5. A sample

-2-

Use Case Specification document written for one of the PPMT use cases is available in the 2
quarter report. The Use Case Specifications are based on the Rational Unified Process (RUP)
Use Case Specification template available from http://www.rational.com/. The Use Case Model
will be available for download in the second year following deployment of the first “official”
version of the PPMT system.

1.3 PPMT Design & Architecture

We have completed an analysis and design of the PPMT architecture using the Use Case Model
and Use Case Specifications discussed above. The PPMT design derives from the CORBA
Component Model (CCM). The CCM is discussed in more detail below; class diagrams (Figs 6 —
26), sequence diagrams (Figs 27,28) and a deployment diagram (Fig 29) illustrating the more
important aspects of the PPMT design are provided at the end of this report along with an
assessment of the overall design and planned implementations. Note that although some
information has been suppressed from the diagrams for the sake of clarity, the diagrams represent
actual Java code that was generated from a CORBA Interface Definition Language (IDL)
compiler using a complete description of the system expressed in the CORBA IDL. Some
interfaces have been left undefined because they pose little technical risk and are not required for
the initial implementation testing of the PPMT system. At the present time we have implemented
approximately 25% of the generated Java code that is required for the first release version of the
PPMT.

1.3.1 CORBA Component Model (CCM)

The goal of the PPMT project is to construct a state-of-the-art distributed, heterogeneous (i.e.,
multi-language and multi-platform), component-based architecture that provides flexible and
extensible connectivity and legacy integration. To achieve this goal, we are deriving the PPMT
architecture from the CCM because the CCM architecture provides mechanisms to connect
distributed, heterogeneous ‘“‘components” via generic, non-proprietary interfaces that facilitate
dynamic system aggregation and integration/fusion of legacy systems. The CCM also provides a
complete Application Programmer Interface (API) for event handling, security, persistent state,
and transactions. Figures 6—11 at the end of this document provide class diagrams that show the
key behavior of the CCM generic interfaces that we have implemented in Java (see “Language
Considerations” above for a justification of using Java to implement the CCM). Note that the
CCM specification is not yet a standard but is currently undergoing final revision; a ratified
specification is expected in the first quarter of CY 2001. Since the CCM specification has not yet
been accepted as a standard, there are no commercial or open source implementations of the
specification available. The CCM implementation we have produced is cursory and will be
replaced with a fully compliant (open source) implementation as soon as one exists. We have
taken great efforts to ensure that our interpretation of the CCM specification (OMG TC
Document ptc/99-10-04) is compliant (via private communication with OMG members and CPI's
recent membership in the OMG) and hence we expect few problems in porting the system to a
compliant CCM implementation. The interested reader should visit http://www.omg.org for more
detailed information on CORBA and the CCM.

1.4 CORBA Specifications, Deployment Issues, etc

1.4.1 RBA Services

The CORBA Common Object Services specification (version 12/09/98) defines behavior and
functionality for commonly used services such as security, persistence, name resolution,

-3-

transaction, efc. In developing the PPMT architecture we have chosen to utilize the Interoperable
Naming Service (INS), Notification Service, Telecom Logging Service, and Persistent State
Service (PSS). The services currently being utilized (except the PSS) are provided free for non-
commercial use by Object Oriented Concepts (http://www.ooc.com). The PSS we have adopted

1.4.2 ORB Benchmarks

Given that the PPMT core architecture is distributed using CORBA technologies, one decision we
had to make is the choice of the third-party implementation of the CORBA specifications. We
evaluated several third-party implementations (details were presented in the 2™ quarter report).
The evaluated implementations are:

. JavaORB by Intalio (http://www.intalio.com)

Based on our evaluations of the listed products, we expect to use the products available from
OOC. Since both Washington University and Intalio are expected to release open source CCM
compliant ORBs within the next few months, named ZEN and OpenORB respectively, we will be
considering a port of the PPMT implementation to one or both of these CCM compliant ORBs

once a stable release is available.

1.4.3 Deployment Issues

The PPMT consists of a platform-independent, distributed, client/server-based architecture that
initiative, the PPMT will be made available from a host web site under the restrictions outlined in
the GNU General Public License (GPL) (see hitp://www.gnu.org/copyleft.gplhtml). The
deployment platform(s) will provide the capability to execute the PPMT as well as download
some or all of the PPMT source code and binaries including a client, servers, relational
database(s), and documentation. The execution of the PPMT on the host web site is expected to
be multi-platform in order to support multi-threaded load balancing as well as concurrent
processing for computationally intensive scenarios. The initial target platforms are
Windows/Intel, Linux/Intel, and IRIX/Silicon Graphics. @ A stable software compilation
environment has been constructed and is currently operational on both Windows NT 4.0/Intel and
IRIX/Silicon Graphics. We will be testing the compilation environment on Linux/Intel during the
1" quarter of the Year 2. All of the software and accompanying documentation is under
configuration management using the Perforce client/server configuration management tool (see
http://www.perforce.com).

1.5 User Interface Design & Implementation

The design and implementation of the GUI has proceeded steadily although more slowly than the
phenomenology aspect of the PPMT. The design and implementation of the GUI has been guided
primarily by the Use Case Specifications that were written during the 1% and 2™ quarters. The
technologies we are currently using for the PPMT GUI are HTML, XML, and Java. These
particular technologies have been selected so that the PPMT GUI can be executed through a
browser or as a standalone Java application. As implementation proceeds we will ensure that the
PPMT GUI functions as both an application and an applet. The PPMT GUI is being developed

with the Forte for Java Integrated Development Environment (IDE) provided without license or
cost to the general public by Sun Microsystems (see http://www.sun.com/forte/ffj/).

2. YEAR 2 GOALS & TASKS

2.1 Application Goals & Tasks

e Complete development of initial implementations (1-D photochemical transport modeling
of planetary stratospheres using empirical atmosphere models and the Newton-Raphson
algorithm) (1* & 2" quarters)

e Validation and testing of initial implementations via detailed analysis of CASSINI/CIRS
Jupiter flyby data (e.g., CIRS/JUPITER Far-IR Composition Study data, CIRS/Jupiter
Mid-IR Composition Map data) (2™ & 3™ quarters)

e Delivery of a comgleted, validated “official” PPMT Jupiter version to NASA/GSFC
Code 693 (end of 2™ quarter)

e Construction (i.e., recoding of legacy algorithms) and implementation of photon transport
algorithms, for correct evaluation of stratospheric MUV photodissociation, for
calculation of molecular rovibronic emissions (e.g., ethane & acetylene), and for
calculation of emissions from chemically-produced metastable species (3™ & 4™ quarters)

e Begin extension of photochemical modeling methods to thermospheric/ionospheric
region and addition of methods for calculating corresponding emissions at UV and visible
wavelengths (3™ & 4™ quarters)

e Delivery of the next “official” PPMT version including basic photon transport algorithms
(MUV stratospheric photodissociation and IR molecular band spectral radiances) to
NASA/GSFC Code 693 (end of 4™ quarter)

2.2 Software Development Goals & Tasks
e Complete implementation of Graphical User Interface (GUI) for the PPMT that satisfies

the Use Cases needed to support detailed analysis of the CASSINI/CIRS Jupiter flyby
data sefs

e Incorporate type definitions and use of the CORBA Persistent State Service (PSS) to
enable archiving of phenomenology inputs as well as post-processing outputs

¢ Incorporate use of XML to maintain disconnect between the PPMT GUI and the PPMT
server and for standardized configuration of CCM component “Homes”

¢ Establish test suite for automated component and integration tests of the PPMT
e Develop web pages for deployment platform that provides access to GUI, PPMT servers,

compiled middleware products (ORB and CORBA Services), Application Programmers
Interface (API), and documentation

e Port PPMT to open source CCM implementation (when available)
e Port PPMT to Linux/Intel platform

¢ Implement security measures in the PPMT by incorporating use of the CORBA Security
Service and the CORBA Firewall specification. These security measures are needed
primarily by users and developers that work within a network that is protected by a
firewall or IP packet filter.

3. ASSESSMENT OF WORK TO DATE
The following topics are discussed:

e Development direction for implementations and applications in Years 2 & 3, which has
shifted from that outlined in the original proposal, in which the Year 2 effort (1% year of
the software system construction phase) was centered on finalizing the implementation of
an F1D-based algorithm and the addition of alternate solution approaches/algorithms,
leading to inclusion of 2-D coupled photochemistry and flow-field modeling applications

e Rational for selection of CCM to define the basic architecture, from the perspective of
software development

3.1 Year 2 & Year 3 Directions

Over the past year, work on the PPMT has proceeded slowly. While there is the obvious desire to
lay out an architecture for an implementation sequence that will eventually embrace all of the
relevant phenomenology issues, the initial steps must focus on constructing the components,
methods and GUI capabilities needed for applications of immediate relevance and deciding on the
corresponding implementations will be has taken a lot of time and thought. With hindsight, it is
now recognized that there have been two major obstacles to drafting the basic design and
architecture:

1. the continuing rapid evolution of CORBA-related issues, and

2. the argumentative issue as to what the development direction should be during the next

two years.

The issues and development pressures created by rapidly evolving segments within the general IT
arena (distributed interface specification and management, programming language developments,
security issues, etc) have been identified and our handling of them have been described in
previous quarterly reports and elsewhere in this document. The focus of this discussion is on
giving a clear description of the development direction choices from an applications-and-use
perspective and on why we have selected the direction we will follow in the next two years.

Within the context of this project, there are two complementary approaches to atmospheric data
modeling and analysis based on a priori physics-based algorithms: dynamics-based modeling
and modeling of observables. Dynamics-based modeling here refers to the continuing
development of modeling and simulation codes that attempt to encompass all the basic physical
processes underlying the overall structure and multi-scaled (temporal, spatial, compositional)
variations within an atmosphere: horizontal transport, vertical transport, photochemistry, erc. A
large number of studies have been published to date illustrating various perspectives and degrees
of comprehensiveness along these lines (as noted in the original proposal); examples include

¢ 2D photochemistry with eddy mixing and advective transport (e.g., Dire [1997])

¢ thermospheric general circulation models (e.g., Bougher et al. [1999])
These are valuable for in-depth analyses of the couplings among the underlying physical
processes and their cumulative impacts (e.g., diurnal, seasonal & solar cycle variations), for
comparative studies of atmospheric composition variations, for determining the limits on
modeling capabilities related to uncertainties in various inputs, simplifying assumptions and
algorithmic approximations, etc. However, such models can be very computationally intensive
and are not appropriate when attempting to infer atmospheric conditions directly from
observational data.

The complementary approach centers on using observational data to infer current atmospheric
conditions through the use of a priori algorithms focused on the microphysical and transport
processes giving rise to the observables, e.g., collisional excitations, chemical reactions, radiative
transport. This is the approach taken when utilizing remote sensing data (e.g., IR emissions from
stratospheric regions, FUV emissions from upper atmospheric regions) to construct (or retrieve)
an empirical “picture” or “snapshot” of the atmosphere at the locations and times of the
measurements, particularly when such data are acquired in large volumes or in an automated
measurement sequence (subject to the obvious requirement that the microphysical processes and
parameters are well understood and the associated algorithms have been validated, and the
available observables provide adequate information to reliably infer the environmental
parameters/atmospheric conditions of interest, e.g., vertical profiles of atmospheric temperature
and abundances of tracer species). The differences between the two approaches were not
acknowledged in most earlier studies of outer planet atmospheres (including the Voyager flybys).
The relevant data sets typically consisted of small numbers of measurements and were viewed as
“representative” of mean conditions. Earth-based data in particular were effectively hemispheric
averages, with perhaps partial resolution of latitudinal or solar-zenith angle variations. Analyses
of these datasets with 1-D photochemical transport models aimed at providing constraints on
“mean” atmospheric parameters (e.g., minor species mixing ratio profiles) within the limitations
imposed by either limited computing capabilities, limited instrument capabilities, or both. In
some cases the older data sets were subjected to dynamics-based modeling studies, pointing out
the limitations of 1-D modeling and perhaps getting some insight into horizontal transport
conditions; however, the main focus in such studies has generally been the development of the
multi-dimensional transport algorithms themselves.

Despite the great increases in computer capabilities, the value, diversity and shear volume of
remote sensing data that can be collected by imaging instruments with high spectral resolutions
force the recognition of the differences between the two approaches; use of computationally
intensive dynamics-based modeling codes to analyze large volumes of remote sensing data
acquired, say, by an orbiter with continuous limb-scanning or disk-imaging instrumentation, is
both impractical and inappropriate. Rather, the thrust of the analysis is to retrieve an empirical
quantitative model of the atmosphere in its current state, as described above. A good analogy
here is offered by meteorology forecasting, where large volumes of the most current data
recorded (both conventional and remote sensing) are rapidly analyzed via retrieval algorithms and
assimilated to generate as complete a “picture” of current atmosphere (troposphere) conditions as
possible, which is then used to predict or forecast future development.

This has been taken as the primary thrust of this project — i.e., the principal aim is to assemble (or
construct) and implement physics-based photochemistry and remote sensing retrieval algorithms
that return atmospheric structure constraints or parameters on the basis of available data, in effect
converting measurements of a particular location within a particular time interval to
environmental parameters. In the original proposal, the aim of having the design & architecture

-7-

encompass both remote sensing-related and dynamical-modeling related algorithms and use cases
was discussed, however the potential for implementation conflicts was not recognized. Thus,
planned development for the 2* & 3™ years of the project now aims more toward the
incorporation of radiative modeling algorithms in the PPMT rather than the inclusion of
multidimensional (horizontal) transport modeling algorithms. It is hoped that it will be possible
to construct methods for at least 2-D dynamical (advection) modeling (McMillan [1992], Dire
[1997]) during the 3™ year, which will require expansion (revision) of the overall design and
architecture. There is also the obvious consideration that the initial implementations will be
focused on the Cassini Jupiter flyby data, for which a 1-D approach to the photochemical
modeling of observables (including higher order hydrocarbons such as methyl acetylene and
benzene and nonhydrocarbons like H,S and CO,) is suitable; multidimensional transport
modeling capabilities will not be called for until Titan measurements begin in 2005. The high
spectral resolution and good spatial resolution of the CASSINI/CIRS instrument in the Jupiter
flyby measurement sequences (e.g., the CIRS/Jupiter Mid-IR Composition Map and the
CIRS/Jupiter Far-IR Composition Study) will yield not only latitudinal profiles (if measured) of
species heretofore unresolved but also complete maps of stratospheric pressure-temperature
profiles and far better determination of the vertical profiles of the major hydrocarbons (e.g., C:Hz,
C,H,, C.He) than have been possible to date.

In addition to CIRS hydrocarbon analysis and retrieval applications, we are also very interested in
extending the PPMT to include physical observables at deeper and shallower (higher altitude)
pressure regions; the former includes CIRS data acquired at far-IR wavelengths (e.g., H,S) and
CASSINI/VIMS data, while the latter pertains to the thermospheric and ionospheric data to be
acquired by CASSINI/UVIS. Each of these anticipated sets of use cases, i.e., use cases requiring
handling of radiative transport and/or ionospheric/thermospheric modeling capabilities, are
encapsulated in the attached class diagrams (Figs 12—24). These diagrams illustrate the
architecture that has been laid out (in the course of much argument) so as to be equally suitable
for electron impact and ionospheric chemistry phenomena as for stratospheric FUV-MUV
photochemistry. Photon transport is important in both regions, so it has been included on an
equal footing with electron and molecular species transport.

3.2 Selection of CCM

Although “requirements creep” and redirection of development are common and unavoidable, it
is not trivial to design a software architecture that is entirely resilient to change. We have stated
that our goal has been, and still is, to develop a component-based architecture that is flexible,
extensible, and amenable to legacy integration. Achieving this goal is significantly more difficult
than simply adding a few more Use Cases to the model. Experience has shown that not all
Object-Oriented software architectures are responsive to all degrees of new requirements.
Experience has also shown that attempting to capture all possible requirements in a grandiose Use
Case analysis will usually result in “analysis paralysis”, an intractable architecture, and no source
code. Hence, it is necessary to take great care when deciding how many Use Cases are “enough”,
which Use Cases involve the greatest technical risks, and how to utilize development iterations to
avoid "stuck” analysis and to achieve flexibility, extensibility, and the Holy Grail of reusability.

Our conscious decision to base the PPMT architecture on the CORBA Component Model is a
first step towards satisfying our self-imposed architectural requirements. It is not the case,
however, that a CCM-based architecture is immediately useable and reusable. The CCM only
serves as the framework for more specialized systems. To guide us in our extension of the CCM
we have employed numerous software patterns that have been identified as established solutions
for specific software problems. For example, we have employed the Quantity Pattern [Fowler,

-8-

1997] to encapsulate physical quantities, units of measure, conversion algorithms, and
geometrical objects. We have also made extensive use of association classes [Booch et al., 1999]
to model physical interactions such as gravitation, magnetism, reaction phenomenology,
scattering phenomenology, and impact phenomenology. Finally, we have incorporated use of the
Iterator pattern [Gamma et al., 1995] as a general approach for modeling n-dimensional scalar
and vector fields. By combining the flexibility of the CCM with well-documented solutions
offered by software patterns, we can ensure that the PPMT is both useable and reusable.

In order to accommodate Use Cases for radiative modeling as well as multidimensional transport
modeling we have attempted to generalize the PPMT architecture so as to not exclude any
aforementioned functionality that may become of greater importance in the 2* or 3™ year. More
specifically, we have designed the iterator-based scalar and vector fields to allow for n-
dimensional field representation in the event that time and resources permit us to implement
dynamics-based modeling. Likewise, we have included interfaces specific to particle impact and
scattering in order to facilitate inclusion of radiative and energetic particle transport. Note that
the heterogeneous, distributed nature of CORBA and the CCM in particular will enable us to
integrate legacy components into the PPMT in a plug-n-play fashion.

REFERENCES

Bishop, J., Flexible code metastructures for photochemical modeling (final technical report),
NASA SBIR Contract NAS5-38012 (Phase I), 15 July 1994. See also: Bishop, J., J. Roberts, P.
Marsden, and C. Biczel, A prototype flexible photochemical modeling code for atmospheric
science applications: Science notes, user's guide and reference materials, attachment to final
technical report, 15 July 1994,

Booch, G., J. Rumbaugh, and 1. Jacobson, The Unified Modeling Language User Guide, Addison
Wesley, 1999,

Bougher, S.W., S. Engel, R.G. Roble, and B. Foster, Comparative terrestrial planet thermospheres
2. Solar cycle variation of global structure and winds at equinox, J. Geophys. Res. 104: 16591-
16612, 1999.

Dire, J.R., A two-dimensional photochemical transport model for the stratosphere of Titan, Ph.D.
dissertation, Johns Hopkins Univ., 1997.

Fowler, M., Analysis Patterns, Addison Wesley, 1997,

Gamma, E., R. Helm, R. Johnson, and J. Vissides, Design Patterns: Elements of Reusable
Object-Oriented Software, Addison Wesley, 1995.

McMillan, W.W., Revelations of a stratospheric circulation: The dynamical transport of
hydrocarbons in the stratosphere of Uranus, Ph.D. dissertation, Johns Hopkins Univ., 1992.

Romani, P.N., J. Bishop, B. Bezard, and S. Atreya, Methane photochemistry on Neptune: Ethane
and acetylene mixing ratios and haze production, Icarus 106; 442-463, 1993,

Summers, M.E., and D.F. Strobel, Photochemistry and vertical transport in Io’s atmosphere and
ionosphere, Icarus 120: 290-316, 1996.

'

N
N /

e
Access PPMT
/:'dmm Acces PPMT)

7 // ’ (,._.,\3

g

//’
b T . .
Sl T Specify Photochemical
-~ Phenomenclogy

(from Specification of Photochemical Phenomenc

Analyst .

"~

(from Use Case View) e
Ty
\ /——_K‘\
\ _

\ Photochemical Phenomonclogy
; Calculations
A (from Photochemlcal Phenomenelogy Caloulatie

Analysis and Post-processing

Honrm Rmalimic vnd Db meaammin ey

Figure 1 Main Use Case diagram from the PPMT Use Case Model.

T —

(

o™

Manage User Profile

4
,~/
e
r//
) - include>>
T <<incluge T
R)mmw“wmé(’)
) N .
Analyst AN Download PPMT Log on to Client
(from Use Casa View) \\\
A <<include>> e
e >_ __________ >/ Y
N S N
Manage Processes Execute PPMT

ffenem Frarmria PPMTY

Figure 2 Access PPMT Use Case diagram.

- 10 -

o

e -

Specify External Energy Inputs

QR

Specify Atmosphere Body

(from Atmonvn\u Bedy)
(frglg External Energy Inputs)

) 7/

<<include>>

<<iylﬁde>>
\ /”

‘ / =

G /L—/ <<inglude>> S
A, »] 4 ’-_'___'__P-—
S Specfy Basc Settings
X < peciy g
- (fom Basic Settin g}
(from Use Case View) /] oq\ <<mQIE\3>>
N S,
/ N\ (
<<intjude>> .

\;__“",

<<inc}ude>> \, Speciy Background Atmaosphere

\ Conditions
A (irom Badkgiound Atmosphare Conditions)
, \

() Y
N’ /"”‘x\
Specify Microphysical "___/./,

Characteristics

(from Microphysical Charad eristios) Specify Photochemical Species

o Phatacheminal Traniae)

Figure 3 Specify Photochemical Phenomenology Use Case diagram.

<
Y o TN
. .
Archive Results I
y Compare Results
A
i

, 7
<<inglude>2<inglide>>

Vs -
/" <<include>> (\)

o et~

1 T Evaluate Errors

< »>
Tinclugde; i

Analysis and Post-processing

{
. e
<<inelyde >> Plot Profile

User

<<include>>
\-k -
e ~.
()
T il
(\5 Accounting of Energetics
g 9
~— A

Specify Output Formats

Figure 4 Analysis and Post-processing Use Case diagram.

- 11 -

T

3

/

c

~ ey e’

Specify Initial Conditions

.

¢ D)

\,._,,f/
<<inchide>> Specify Boundary Conditions

=7
<<instide>>
C e
el

~.. "

rd

Photochemical Phenomonolegy

User | -
Calculations <<lncm¢g‘::>
T /,.—.u\
<<inchude>>]
\\-_w_./
Send Mail
T (from Utilities)
)
\\"\.__,_f
Display Message
e 1T A

Figure 5 Photochemical Phenomenology Calculations Use Case diagram.

<<interface>>! _nome T i <<hteface>>
CCMHome fegw v mom o] CCMOprt Il'fpl e e e o e e kay‘;g. primarngyBase
-ravDelegate \\
yd -rec‘D\Iegate
Navigation_impl e -eventsDelegate ™
= 4 - — Receptacles_impl
Navigation_impl() Events_impl
$provide_facet) $Receptacles_impl()
“qescribe_facets() $Events_impl(Sconnect()
$pmovide_all_facets() ‘EventS_imp'O $disconnect()
provide_named_facets() inalize() $5et_connections()
:same_c omponent() :QEL_SC;:_"bSeUmBTO ghinitialize()
get_camponent() ‘:U ibe()
F*getPOACunent() nsubscribe()

*connect_consumer()

“*disconnect_consumer()
initidize()
instaliEvent))
&removeEvent()
@instalEmitter()
&removeEmitter()

installSink()

removeSink()

destroyEvents(}
$pushEvent()
‘geiCo nsumer(}

Figure 6 Main class diagram of the classes required to implement the CCMObject interface.

-12 -

| Navigation jmpl __ |

Hashtable

-facets
| fhom utih) jert oo

‘Navigaiion_impl()

Sprovide_facet()

. . ‘“describe_facets()
‘provide_a"_facelso
“provide_named_facets()
“®same_component()

get_component()

F¥getPOACurrent()

Figure 7 Details of the implementation class for the CCM Navigation interface.

Receptacles_impl

®Receptacles_impl()

-connections| Hashiable

*connect()
‘disconnect()
“get_connections()
initialize()

Figure 8 Details of the implementation class for the CCM Receptacles interface.

Events_impl

$Events_impl()
SEvents_impl()
PHinalize))
$get_consumer()
$subscribe()
*unsubscribe()
‘connect_consumer()
Sdisconnect_consumar()
&Pinitialize()
@installEvent()
@removaEvant()
&¥installEmitter()
&removeEmitter()
@instaliSink()
@remaoveSink()
@ destroyEvents()
SpushEvent()
$4etConsumer()

» (from util)

-component
bkl et S

<<Interface>>
CCMObject

-receptacles

-avents

-emitters

Figure 9 Details of the implementation class for the CCM Events interface.

=+ (from util)

Map

-sinks

-13-

CCMHome_impl

$CCMHome_impl()

$get_companent_def()

$ge1_home_def))

remove_component()

PcroateComponent()
F¥indByPrimaryKey()
P¥removeComponent()
PgetPrimaryKey()
P¥getComponent()
P¥getPOACuUrment()

Figure 10 Details of the implementation class for the CCMHome interface.

-compaonants

Hashtable
(from util)

HomeFinder_impl

Laﬁ debug: boolean =false

®HomeFinder_impl()

ndByHomeName()
ndByHomeType()

 defaul_POAD
Smain()

%ind_home_by_component_type()
%ind_home_by_home_type()
Sind_home_by_nama()

ndByComponentType()

-rootNamingContext

Figure 11 Details of the implementation class for the CCM HomeFinder interface.

CCMObject_impl
(fram Components

Q

PhenumenoloﬁyManager impl i

“PhenomenalogyManager_impl()
'Tun_scenano()
“connact_space()
%disconnect_space()
Sget_conneclion_space()
Sconnect_ChemistryManag er)

Sdisconnect_ChemistryManager()
L ®gel_ronneclions, ChemestryManag |

i
Space_impl
{from Macrophysics)

: $Space_impl()
rovide_magnetic_field))

Sprovide_gravitational_field()
Sprovide_local_interstellar_medium()

. Sconnect_CelestialBody()

_ Sdisconneci_Celestia/Body()
#*ga1_connections_CelestialBody(

: =

Figure 12 Class diagram showing the main controllers of the PPMT architecture,

ChemigtryManager_impl

SChemisiryManager_impi()
Scompute_particle_distribution . *
Sconneci_celestial_body{)
Sdisconnact_celestial_body()

L %get_connection_calestial_hn

¥
ParicleDistabution_impl
{from Distributions)

‘PanicleDistnhuﬁun_impl{)
Soravide_value()
“provide_flux)
Sprovide_number_density()
Sprovide_production_rate()
Sprovide_luss_rate()

POUDPIE W

NamingContext
(from CosNaming)

CelestiaBody_imp!
(from CelestialBodies)

.14 -

“CelestialBody_impl()
Sprovide_surface()
Sorovide_atmosphere)
Sconnect_magnetismQ)

Sgisc onnact_magretism()
36t_cornection_magnetism()
’cunnem_glavil ation{}
Sdisconnect_gravitation()
l‘ga(_c annection_gravitation()

CCMObjeck_imp)
(from Components)

A

G avitation_Impl

‘Guvih(ion_impo

arca(
‘accoluaﬂano
‘connnd_oellsﬁll_bom
Ydisconnact_celestial_bodyQ
$gei_connection_celestial_bodyQ
%connect_space)

Space_impl

Magnetism_impl

’Splol_implo
provide_magnelic_feld)
‘pn\i de_gravitation al_field)

$onnect Col estialBody)
‘diconnld_c elesi 2tBo Y

’pnu‘ de_local_intersiellai_mediumQ

‘Mlgndkm_i mpk)
‘connnc_celestil_body()
$disconn ed_celest al_body(
‘ud_wnmci on_celesi & _body()
‘mnnucLsplmO
$discanned_spaoe)

‘dkcom\ed_xpauo ‘gd_mnmci on_spac(}

‘gn(_cun nechons_C o estial Body)
‘gﬂ_conncetion_spluo

Figure 13 Class diagram showing the container class for macrophysical fields.

€ CMObject_impl
(from Comp 33
Amosphere_impl
Samosphere_impiQ)
CelestiaiBody_imp! ::nssuno
SCalestiztBody_impl() ernparat
::‘M'_‘\ﬂ'ﬂo Srumber_density()
vide_mmosphere() Scohr ¢
onnect_magnetism) [-------n o o :";,“:"""J";"f"

Sprovide_molecular_transport()
Sprovide, _photon_transport()
_graviation) ﬁ:ru:idn _photon_dissociation()
Sget_connaction_gravitation) Sconnect_Particle Distrbution)
A Adisconnect_Partick Distribution()
Qpat_connections_Particle Distribution()

Sconnect_graviation)

Satalike_impl Planet_jmpl
Ssaelite_implQ) St gl SPianet_jmpl()
Sy o || Ym0
Nget_connaction_planet() Aget_conmections_Sta)

Qconmact _Saefing
Adigconrect_Saeling
Sget_conmectbns_Satdite)

Jupher_impl
Supher_ImpiQs

Figure 14 Class diagram showing specialized Celestial Body interfaces.

-15-

CCMObject_impt
——{si(from Components)|

Iy

: |

Atmosphere_Impl

" " CelesiaBody_impl Satmosphere_impiQ
Magnatism_impl :r;.,\mo
fr hysics) | .
om Macrophysics) OCelest 2B ody_impiy g:ﬁ:;:‘:’:&m
.Mlancﬁsm impiQ ‘pwv!d:_}urhc() ‘eolumn—dtnxit)()
®connact c'_ledial bodyQ ‘P“M&—"""p""o R4yn ml:al mixingQ
‘diseonn:ct ethﬂi‘al body0 |~ 1 .oomcci_maondino [rr:’ ‘n morwulu weighi}
' — — .dswmto_magmtkm() “‘- iy v
get_connection_celestial_bodyQ et i ts $provide_chemistry)
Sconnect space() get_cannaction_magnetsm() .pmvidu molecular_transpod)
~dismn\»:ct space(} Som ect_guvitation ‘plovide:photon tu-nsporn
-, — 'ﬁswmndhvavihﬁovo . - "
gat_connection_space) .D“ connection_gravitatio n) :prowdn_pho!on_dlsocuﬁono
— — connact_ParicleDistributiol
& ol O

ct_PaticleDistribution()
‘gct_oonnudiom_Particchishibuﬁono

Gravitation_impl
(from Macrophysics)

b wmmemmann

G avitation_implQ Surface_impl
‘ﬂmxo

.acctlcutlono $Surmace_implQ)
‘conntd_onlmial_bodm —

‘dkconnod_calnsﬁn_bodyo
.gct_co nnection_celestial_bodyQ
‘connnd_su a0e()
.dlsconnoq_spluo
‘uut_connectiun_spaceo

Figure 15 Class diagram showing associations between CelestialBody and related interfaces.

CCMObject_impt
(from Componants]

Atmosphere_impl

‘Atmosphun__implo
ressure()
‘lomptmureo

ParticleDistribution_imp!

:numblr_dlnsm | (fom Distributions)
—_——— mﬂ;"‘) P aticlaDistribution_implQ)
grnamioalmbdngd oo > $provide_valueQ
ean_molecular_weighi(} ‘pmvidc-ﬂu)()

‘prov!dt_ehemiglr)o ‘providc_numbu_donsim)
rovide_moleculsr_transpor) ‘providn production_ialed)
.provida_phnton_t anspon(} ‘pvovidl_lo- ""0-
‘prwidc_photon_ isso ciation() —
‘onnnod_Pntiel.DidlibuﬁouO
S4isconnect_ParicleDistribution) .
7 get ctions_P articleDistribution() -

Rgn v e o o

£
MolacularTransport_impl Chamistry_impl -
(from ScatteringPh enolo: (from ReactionPhenomenclogy) _| PhotonDisseciation_impl
(from ImpactPhenomenology) |
.Moleculamansvod_impl) ’Chcmisfry_implo
.convevgldJ 'updah_oroduaﬂon_)nd_loq) .FholanDlxudtﬁon_imPU
compute_mixing_ratio_adjustment(.compuh_lumiun!_mbdng_uﬁm
Sconned_DiffusionQ Sconnect_Reaction))
.dlscnnmd_biffusiono ’disconma_ﬂucﬁono
‘gel_connccﬁons_l)iﬁusiono ‘gnt_ccnnndions_ﬁndiono

Figure 16 Class diagram showing details of Atmosphere interface.

-16 -

CCMObject_impl
{from Componante)

A

Field_imp!

AFiald_impi()
$repository_id(}
$2dd_to_element)
®add_elemenl()
*add_element_set_iterator])
$add_all_from{)
$emove_element_at()
$romove_all)
Sreplace_element_at()
retrieve_element_at()
Snumber_of_glements()
Sis_smpty()
$create_fterator()

A

ScalarFie'd_impl

‘VectorField_impt

$ScalaField_impl()

SectorField_impl()

lterator_imp!

$set_to_first_element()
'set_to_next_slement()

gt to_next_nth_element()

‘remeva_element()

Svetrieva_element_set_to_next()

Sretrieve_next_n_elements()

‘nut_equa!_retrieve_element_set_lu_nexl()

Sramave_element()

Sremove_element_set_to_next()

Sremove_next_n_elements()

‘nm_equa_remove_elemant_sen_‘lo_nexi()

o “replace_element()

Sreplace_element_set_to_next()

%repiace_next_n_elements()

®not_equal_replace_element_set_to_next{)

*add_slement_set_iterator()

$add_n_elements_set_iterator()

Sinvalidate()

is_validg)

#is_in_between()

Wis_for()

Sis_const()

$is_squal(}

® clone()

3ssign()

*destroy()

Figure 17 Class diagram showing details of generic field interfaces.

Oee---

Partiole
(rom Faricles)

CCMRject gl |

Ditrdutior Iteraction_mpt
(#om Ciarbuions)

P

trom C:

) <F

(fom Distrbdions)

“paticalistibugon med |

$en_imp()
o onrece_Paride Db on()
Nke snnecr_Pacd de Ditributlon()

oo] Spa_osnmacrions_Paricledkrbuion

1

\mpact_impl
(from Impact Phanomarialogy)

SPariicie Chstbution_mpk)

e]
Boonnect_EnvironmentQ

<o -] Sprowide_vanaQ Azconneet connectisns_Rescrant()
Tprride_t |_Environment) . _|
w:'m, danery Agn_connections_EnvionmanQ ""‘"q “-“’mm‘w o
Soruvide_procouion_rte0 e Sy _corviecions MieoutarPod.cr0
provide Juss_ratel) Aom cornai /3| Agonneat_Photon Froduot()
h - =0 Savornect_Photon Frodul ()
Aga_corrections_Phaton FroductQ
Woleouta Distribution_mg! S
Semertary Partichs Dstribulion_mol
(rom Clstrbubons) poldie oy i
Q,M._..q...,_,.'.%no Bementr; Patci Dtrbuton_mplQ)

Figure 18 Class diagram showing kinetic distribution function interfaces.

-17-

CC MObjedt_imp!
Mom Componants)

A

PartioleD-shribyton_impl

AP artcheDisyd ulon_im ply
$p ouide_vabied)
$povide_flngy
auide_number_denshd)
$povide_producton_rrte)

Wpovide_loss_rake()

5

MalaculaiDishibution_impl

¥ $MoleculaDistibution_impl)
. Fprovide_miving_ratioQ

Padide
(hom Parficies)

ElementaryParicle Distibadion_impl

$c:ementaryPattideDistiibution_implD

Transportad_impl

Transtent_impl Bath_impt

€ndFrodudt_impl

Elsctronbishlution_lmp

PholonDlsiibution_tmpl

$Tunsported impQ)

CTranient_imp i) $Beth_impi0

®EndProduc_imel)

¥ ¢ ctronDishiibution_impl0

®PhotonDistibution_impIQ

Figure 19 Class diagram showing specialized kinetic distribution function interfaces.

q

mpact

'rom Partichese - - - - -

Distrioutionirteczction_mpl

(trom Di)

‘S Distribution interaction_impiQ

Qconnect _Particle Distribution()

disconnect_Particle Distribution()
_connections_Partiche DistributionQ)

mpact gl

Simpact_impiQ
Qconnect_target)
Wdisconnect_target)
Sget_connaction_target()
Qconnact_MolecudarProduct)
Bdisconnact_MolecularProduct()
‘Spet_connactions_WoiecularProduct()
ct_photon_product()
Adisconnect_photon_product()
Apet_connection_photon_product()
Qconnact_slactron_product(Q)
Qdisconnect_alectron_product()
Qget_connection_electron_product()

Bementaty Particlelmpact_impl

“Bemenary Particke!mpact_impi()
Sconnect_elementary_particle_beam()
Sdisconnect_elementary_particle_beam()
Qgat_connection_elerentary_particle_bearn()

Photontmpact_imel

Sfhatonimpact_implQ
Sconnect_beam()
’disconnm_bumo
Sget_connection_beam()

Dissociation_impl

S0 ssociation_impl)

. r

yP:

)

SBemantary Padticle Dissoctation_mpl()
Ssu_production_and_loss()

Photon Dissociation_impl

“SPhoton Dissociation_impiQ)

Figure 20 Class diagram showing impact phenomenology interfaces.

- 18 -

iom Patticlag)'e.
S —

Distributioninteraction_impl
(from Distributions)

“Distributioninteraction_impl()
‘l:unnecl_PanicleDistribuﬂanO
Sdisconnect_ParticleDistribution()
“get_connections_ParticleDistribution()

———— "= from Components)

Reaction_impl

*Reaction_impl()
‘conned_ﬂeactanto
“disconnect_Reactant()
‘gat_cnnnec!ions_Reactant()
Sconnect_MolecularProduct()
“disconnect_MolecularProduct()
‘get_connections_MolecularProductO
‘connect_PhotonProduct()
$disconneci_PhotonProduct()

CCMObject_impl

Chemistry_impl

SChemistry_impk)
Supdate_production_and_loss(
Scompute_transient_mixing_rat
$connect_Reaction()
disconnect_Reaction()
get_connections_Reaction()

ios)

%get_connections_PhotonProduct()

Y
Reaction
(from Particles)

Distributioninteraction_Impl
from Dislribulions)

Spistributioniataraction_Impig

Figure 21 Class diagram showing reaction phenomenology interfaces.

Torarriom ot
TccMobjea impl

Qosnnact_Padical irtribution)
Saisconnect_ParicieDistibotond
get_oonnedions_ParticleDistibuticnd

&

Boatte ri.ni mpl

; —
| Sscattanng_impi)

Scattering | | Sconnact_Environment)

1 Sdisconnent_Evvironment)

+ Sgat_oonnedtions_Envirenmen '

: Soonnesdpecial_gas) H

I Sdigsannect_spedal_gasy

+ Baet_connedion_special_gag) |

|

‘\'_*»,_kv_mm Camponents)

Transpod_impl

$Tranapod_imy

Sgcmnnect_8

Roonned_Scottaringd

$get_connactions_Scattering)

Pl

astteringQ

MoteculaiTransped_jmpt

Diffusian_impt __

rideScattenng jmpl

SElementaiyP atticta Sz attadng_impl)

[_ElecronScattaring_impl |

Bpaoteon! o Transpod_impl)

B¢ orrenrg o0
Bcompule_mixing_ratio_sdustmarts
Beonnect_DHusiond)

yisoonnedt_Diftusion() !

ElementaryP atiale Transpod_impl
S5 ermentayPa e Trangp art_impl)

Somp ria_daribut o0

Scannes|_Ble menta nfPa fl e Scatiern o)
Sgsmnnacl FlementawPafideSoatiering)

#_con pections_Ditlusisnd {

WonotonSeattaning_impl)

SEledronSoateing impi)

out_connectom_ElemantaryP astic's Sc dtwing)

T

Ph ckon Tran port_imp!

EledaonTranspod_impl

H
®Bhotan Transport_implQ)
1 Sconnact_PhalonS cateting)
3 Sdisconnact_PhotenScattaringd
' %5e1_sonnedions_PhatonBoatteringl)

BEre dron Transpor_ mpK)
Woonneci_ElechonS catierin g
®gigconnact_Elnetrans cateidngd

Figure 22 Class diagram showing scattering phenomenology interfaces.

-19-

$9et_oon nedans_ElectronS catt ering()

O

/ Particle

ElementaryParticle

MoleculaParticle

Ao
—]
7\
. _ Malecule_impl —= L}) [S
Atom_impt MetastableParticle_impi . Phaton_impl ?sclrun_imp!
— Srame ‘
Sname) |- o ’massg e $nameg :F‘name() Sname()
Smass) Sradius() . :sso : Smass() Smass()
®radius() “3tomic_weighl() ‘: lusQ ht
Satomic_weight() Stormation_snergy(y . .nn:n:._welgﬂ_o .
“gissociation_gnergy() einstein_coeffients)

EinsteinCoefficients

EinsteinCoefficients_impl

Figure 23 Class diagram showing all supported particle types and their attributes.

O

Particle
Interaction

Reaction Scattering Impact

i

Impact_impl

Reaction_imp! Diffusion Scattering_impl

cross_section()
‘quantum_eﬁciencieso

i

Diffusion_impl v
DiftusionCoefficierts CrossSection

Sdiffusion_coefficients()
$einstein_coefficients() Z%

CrossSection_impi

DiffusionCoefficients_impl
(from DiffusionCoefficientsValueF actory) Svalue()
. description()
nit_of_measure
‘28 ® squals() 0
Smagnitudes()
$anargies()

Swavelengths()

Figure 24 Class diagram showing all supported particle interaction types and their attributes.

-20 -

Scalars <<Interface>> Scalar
Bomagnitudes_|] : double Quantity Romagnitude_: double
Smagnitudes() _ | ®magnitude()
® truncatable_ids() B ::zigzgptiono <t ® truncatable_ids)
$ read) Sunit_of_measure() $read)

& write() oquals) * wiite()
¢ _type) S | S typed
L :
~ H
, : /
#unh_utrke)asure_ v #unrt_of_rzg e _
Scalar_impt
<motaces> <<In15:;ce>> calar_imp!
ConversionAlgorithm
:va|ue0
------------ -~ d
LY description() description()
convert() Scoven() Sunit_of_measure()
I i Sconversion_algorithm() 4 equals()
A . Smagnitude()
DegreeToRadien Degree Radian
& truncatable_ids() & truncatable_ids() 4 truncatable_ids(
& read() & read() * read()
S write() S write() & writa()
 typeg *_typeQ) *_typag

Figure 25 Class diagram showing interfaces for the Quantity pattern.

<<Intedaces>
Quantity
(from Maeasure)
O D s\rllu.()
‘ducvipiiono
Tuple ‘uni(_ov_musumo
’_nqual()
#valge_[|
Vecior
Point
~mlunitud.()
$ocation) Wunit_of_measure_ ANy
Q_L table_idsQ \O{ Qdirachi
&_ready Funit_of_measure_ | ®_truncatable_ids)
:_mu.o Unit L™ 220
_type0 (hom M easure) _wwite(}
T *_typeQ
\i/ #oo o1di
<¢|nterface>> Vedlor_impl
CoordinateSystem
:'wordinat- _sytem(
Sdesaiption) 1anstorm()
$oigin0 Mluco
StanstormQ ’duaipliono
Stranstormatio n_algorthmQ Funit_of_measureQ
. *_equ.llq)
magnitu de))
$uiple)
V Sdirection)

<<inferface>>
TranstormationAlgortithm

StranstormQ

Figure 26 Class diagram showing use of the Quantity pattern for geometrical interfaces.

221 -

i it TG mal | "G el | ! m} ! aod_imel | TP e irel) Chamatn el © ! MolicdaiTranseod_iml!
L J 1 JL } ! | T il J { |
* compata_paticie_dintrioationa() : ;
i provde_smosphere!) >_‘ H
T provids_moleculer tramapeny |
it et WY
provide_shoton_gissaciation{) |
provide_phaton_tracepont()
prowde_c homistry{) i
=i
campute_distrbubon()
I JEO
so_producton_snd_loasl} I H
" Compute 1SR _thiing_ration)E]
" updite_prodiction_and Tase{] m
compute_mizing_tatic) U
convarged! | -
U
i

Figure 27 Sequence diagram for the Photochemical Phenomenology Calculations Use Case.

Client | PhenomenologyManagertame_imp) l PhenomenglogyManagar !mp![l ChemistryManagertiome_mgl | Qngm\sl[xManagev_vmnl}
|

: set_configuration_veluss({ConfigValua[]) H

L

creale(PhenomenslogyManagerKey)

retum PhenomanologyManager

cre sle{Chemi stryM anagerkay) 3
H >,

retum ChemistiyManagsr

run_scehariof }

]'EJ cnmpuh_pndcla;_dralnbmlnns()

remove(ChemistryManagerkey)

remave(PhenomenalagyManagerikey)
|- S .

Figure 28 Sequence diagram for the Execute PPMT Use Case.

-22.

Web o Client

Server

PPMT
Applet

Notification
Senvice

Parsistent
State Service

Naming
Service

Telecom
Logging

Figure 29 Deployment diagram showing several deployment configurations and client accessibility.

-23-

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the lime for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of nformation. Send comments regarding this burden estimate or any other aspect of this coftection of
nformation, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Dawis Highway, Surte
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
18 August 2000 June 2000- August 2000 - Annual Report (8/99-8/00)
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Photochemical Phenomenology Mode! for the New Millennium NASW-99032
6. AUTHORS

Dr. James Bishop and J. Scott Evans

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) " 8 PERFORMING ORGANIZATION
Computational Physics, Inc. REPORT NUMBER
2750 Prosperity Avenue, Suite 600 5108-4

Fairfax, VA 22031

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
NASA AGENCY REPORT NUMBER
Goddard Space Flight Center #4

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This project tackles the problem of conversion of validated a priori physics-based modeling capabilities, specifically those
relevant to the analysis and interpretation of planetary atmosphere observations, to application-oriented software for use in
science and science-support activities. The software package under development, named the Photochemical
Phenomenology Modeling Tool (PPMT), has particular focus on the atmospheric remote sensing data to be acquired by the
CIRS instrument during the CASSINI Jupiter flyby and orbital tour of the Saturnian system. Overall, the project has followed
the development outline given in the original proposal, and the Year 1 design and architecture goals have been met. Specific
accomplishments and the difficulties encountered are summarized in this report. Most of the effort has gone into complete
definition of the PPMT interfaces within the context of today's IT arena: adoption and adherence to the CORBA Component
Model (CCM) has yielded a solid architecture basis, and CORBA-related issues (services, specification options, deployment
plans, efc) have been largely resolved. Implementation goals have been redirected somewhat so as to be more relevant to
the upcoming CASSINI flyby of Jupiter, with the focus now being more on data analysis and remote sensing retrieval
applications.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Photochemical Phenomenology Modeling Tools (PPMT) 23
r
. ' 16. PRICE CODE
$139,449

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT SAR
unclassified unclassified unclassified
NSN 7540-01-280-5500 Computer Generated STANDARD FORM 298 (Rev 2-89)

Prescribed by ANSI Std 239-18
298-102

